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ABSTRACT

KERATIN 8/18 FILAMENTS: POTENTIAL MODULATORS OF DEATH 

SIGNALING IN OVARIAN GRANULOSA CELLS

BY

Sarah E. Kinsman 

University of New Hampshire, Durham, December 2012

Granulosa cell apoptosis is associated with follicular atresia; but the 

cellular mechanisms that drive this process, especially its cell specificity, are 

relatively unknown. Here, we determined that cultured granulosa cells 

abundantly express K8/K18 filaments and inhibition of protein synthesis 

enhances Fas-induced apoptosis. In this context, the roles of cFLIP, ERK1/2 

and Akt are minimal but conversely, K8/K18 filaments have a prominent role 

in granulosa cell resistance to Fas-induced apoptosis. Keratin 8/18 filaments 

in granulosa cells provide a plausible mechanism to avoid Fas-induced 

apoptosis and this mechanism potentially involves the synthesis of labile 

proteins. The existence of K8/K18 filaments in granulosa cells has relevance
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to follicular atresia and the selection of follicles for ovulation. These insights 

may have bearing on future therapeutic strategies to improve female fertility.

ix
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INTRODUCTION

Implications of Dairy Infertility

Animal infertility is an economic concern of today’s agricultural 

industry. The modern dairy cow is now producing more milk than ever before, 

essentially doubling output from 1951 to 1996 (Butler, 1998), but this increase 

in milk production has been accompanied by an equally-striking decline in 

fertility (Butler and Smith, 1989; Lucy, 2001). To make matters worse, 

farmers are now faced with the challenge of declining cow numbers and 

agricultural land (Dobson et al., 2007). Annual milk production per cow in the 

United States is projected to reach over 14 tons in 2050 (Santos et al., 2010), 

placing greater pressure on the metabolic needs (especially the reproductive 

needs) of the animal. Expanding our understanding of fertility at the cellular 

level will benefit the cow, the dairy farmer and ultimately, the dairy industry, if 

it leads to improvement in reproductive efficiency.

Negative Energy Balance and Infertility

At calving, high-milk producing cows enter a metabolic state referred to 

as negative energy balance (NEBAL) because nutritional intake of the cow is

1
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unable to meet the energy requirements for milk production. The occurrence 

of NEBAL mobilizes the cows’ body reserves (i.e., fat and muscle), which 

collectively has a negative impact on body condition, health and reproductive 

function of the cow. These metabolic changes disrupt the endocrine system 

as a whole, ultimately hindering ovarian activity (Beam and Butler, 1997;

Lucy, 2001). During NEBAL, serum levels of luteinizing hormone (LH), insulin 

and insulin-like growth factor (IGF-I) are depleted, which impairs follicle 

maturation and delays ovulation (Beam and Butler, 1997; Butler, 2000; Lucy, 

2002). In addition, the metabolic by-products of NEBAL (e.g., non-essential 

fatty acids, ketones and urea) infiltrate the follicular fluid of ovarian follicles, 

adversely affecting egg (oocyte) quality (Leroy, 2004) and, thus, further 

compromising animal fertility. For the high-milk producing cow, NEBAL and a 

decline in body condition are directly associated with a higher incidence of 

delayed ovulation, reduced conception rates, and a greater occurrence of 

embryonic loss (Lucy, 2002).

The Ovary

Ovarian Structures

The ovary in females is the primary reproductive structure responsible 

for influencing reproductive cyclicity through its secretion of steroids and for 

producing gametes (oocytes) for purposes of conception and pregnancy. The 

ovary consists of two notable endocrine structures; the follicle and the corpus

2
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luteum. Both of these structures develop, mature and regress during the 

course of a single reproductive cycle.

The Ovarian Follicle

Within each ovarian follicle there is the female gamete, the oocyte 

(egg), which is surrounded by two other somatic cell types, the granulosa and 

the theca cells (reviewed by Aerts and Bols, 2010). Granulosa cells are 

characterized as either membrana granulosa cells, which constitute the 

majority of cells within the interior of the follicle, or the cells that surround the 

oocyte in a mature follicle, which are known as the cumulus oophorus (Figure 

1). Theca cells comprise the supportive cells surrounding the follicle, 

separated from the granulosa cells by a basement membrane. The theca 

cells can be further subdivided into theca interna and theca externa based 

upon their vascularity and relative proximity to the basement membrane of the 

follicle (Young and McNeilly, 2010) (Figure 1). In response to systemic 

luteinizing hormone (LH), theca interna cells synthesize androgens, such as 

androstenedione, derived from the precursor molecule cholesterol. Theca- 

derived androgens diffuse across the basement membrane of the follicle to 

the granulosa cells, where follicle-stimulating hormone (FSH), also secreted 

systemically, directs the conversion of androgens to estradiol (Fortune, 1994). 

This “shared synthesis” of steroids between the theca and granulosa layers of 

maturing follicles is referred to as the “two-cell theory” and was first described 

by Roger Short and colleagues (Short, 1962).

3
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Figure 1 Representative diagram of ovarian follicle structure and morphology.

Folliculoqenesis

Anatomically, ovarian follicles are divided into four classifications 

according to relative developmental stage: primordial, primary, secondary and 

tertiary follicles (Figure 2). Primordial follicles contain a non-growing oocyte 

surrounded by squamous epithelial granulosa cells, which range from 25-50 

pm in diameter (Figure 2a). Primary follicles contain a growing oocyte 

surrounded by cuboidal granulosa cells, and range in diameter from 35-70 pm 

(Figure 2b). Secondary follicles are roughly doubled in size (70-120 pm), and 

contain multiple layers of granulosa cells (Figure 2c). Lastly, tertiary follicles 

are largest follicles (£ 5 mm in diameter) with a defined cumulus oophorus 

surrounding the mature oocyte and antral space enclosed by membrana 

granulosa and vascularized theca cells (Figure 2d-f)(Pedersen and Peters,

1968; Gougeon and Chainy, 1987; Fairetal., 1997; Myers etal., 2004;

4
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Kacinskis et al., 2005; Hunzicker-Dunn and Maizels, 2006; Rodgers and 

Irving-Rodgers, 2010).

Figure2 Follicle Classification, (a) primordial, (b) primary, (c) secondary, (d) early 
tertiary, (e) tertiary, and (f) late tertiary follicles. Bar = 20pm. (Myers et al., 2004)

The Corpus Luteum

Another structure characteristic of the mammalian ovary is the corpus 

luteum. The corpus luteum (CL; Latin for yellow body) is a transient 

endocrine structure responsible for the maintenance of pregnancy through its

5
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secretion of progesterone (Niswender et al., 1994; Niswender et al., 2000; 

Davis and Rueda, 2002). Briefly, following the process of ovulation, the 

remaining granulosa and theca cells of the recently ovulated follicle 

differentiate to form the so-called “luteal cells” comprising the CL. In some 

species, these luteal cells retain size characteristics reminiscent of their 

precursor theca and granulosa cells, but they are generally referred to as 

simply small (<20 pm) and large (20-30 pm) steroidogenic luteal cells based 

upon their relative diameter (Alilia and Hansel, 1984; McCracken et al., 1999). 

There are distinguishing physiological characteristics of the small and large 

luteal cells, though, such as progesterone synthetic capability, sensitivity to 

LH stimulation, etc., but these aspects of distinction are beyond the scope of 

the current literature review. Suffice-it-to-say that progesterone secretion by 

both types of luteal steroidogenic cells facilitates the maintenance of 

pregnancy by preparing the. uterus for implantation and preventing 

subsequent ovulations (Kasa-Vubu et al., 1992; Davis and Rueda, 2002). In 

the event that conception fails, or a pregnancy is lost mid-gestation, the CL 

promptly undergoes regression, progesterone secretion declines, and the 

resumption of follicular development and ovulation for the next reproductive 

cycle occurs.

The Estrous Cycle

In the cow, the duration of the reproductive cycle (estrous cycle) is 

typically 21 days, but may range from 17-28 days. Each estrous cycle begins 

with the onset of ovulation (d=0), followed by an extended luteal phase (days
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1-17) and a brief follicular phase (days 18-21) in non-pregnant animals. 

Similar to horses and humans, cows typically ovulate only a single oocyte per 

cycle. However, the process leading to ovulation in these species is 

distinguished by successive, temporal waves of follicular development, 

defined as “follicular waves” (Ginther et al., 1989), in which groups of follicles 

grow to yield a single, mature follicle for ovulation. Typically two to three 

waves of follicular growth occur per cycle, in which each wave consists of a 

group or cohort of follicles selected to mature, or undergo atresia, during the 

wave. This process of follicular waves ultimately results in the selection of a 

single follicle for ovulation (Fortune et al., 1991; Lucy et al., 1992).

Follicular waves during the bovine estrous cycle are characterized by 

the recruitment, selection and dominance, or atresia, of ovarian follicles 

(Hogden, 1982). Recruitment and growth of the cohort of follicles within a 

wave occurs in response to follicle stimulating hormone (FSH) from the 

anterior pituitary gland (Walters and Schallenberger, 1984). Generally, one 

follicle of the cohort is ultimately selected to continue to grow and becomes 

the dominant follicle, whereas the remaining follicles of the cohort die off in a 

process referred to as follicular atresia. The onset of dominance is identified 

as the first day the dominant follicle is 1-2 mm larger than the next largest 

follicle in the cohort, and all other follicles in the cohort (subordinate follicles) 

cease growth, as determined by ultrasonographic measures (Hodgen, 1982).

The dominant follicle of the first follicular wave may ovulate, but 

typically undergoes atresia because of high systemic concentrations of
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progesterone attributed to the presence of the recently formed CL. A second 

or third wave of follicular development ensues, also yielding a dominant 

follicle which eventually becomes the preovulatory follicle (Savio et al., 1988). 

Increased plasma estradiol produced by the preovulatory follicle generates a 

positive feedback loop to the anterior pituitary, triggering a robust surge of 

luteinizing hormone (LH) secretion and ovulation. Following ovulation, 

remnants of the ruptured follicle (i.e., granulosa and theca cells) undergo 

differentiation to form the corpus luteum (CL). In the absence of fertilization, 

the CL persists for only 16-17 days after ovulation, undergoes regression 

(luteolysis), which then triggers the onset of the next estrous cycle.

As described above, dairy cows typically have two to three follicular 

waves per estrous cycle (Rajakoski, 1960; Ireland and Roche, 1983) 

Conversely, the loss of follicles (follicular atresia), the absence of ovulation, 

and premature regression of the CL are all issues contributing to infertility in 

dairy cows. For purposes of this review, we will focus only on those 

mechanisms directly pertaining to follicular atresia.

Follicular Atresia and Apoptosis

Throughout the lifespan of most female mammals, over 99% of ovarian 

follicles are lost by degenerative and hormonally controlled processes 

collectively called follicular atresia (Erickson, 1966). Tilly and Hughes (1991) 

were among the first investigators to propose apoptosis (programmed cell 

death) of granulosa cells as a direct cellular mechanism contributing to

8
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follicular atresia (Hughes et al., 1991; Tilly et al., 1991). Programmed cell 

death is specific, but the external factors controlling this specificity are 

relatively unknown. It is generally accepted that crosstalk within cells 

between cellular survival and death signals determine the fate of ovarian 

follicles (Amsterdam et al., 2003). However, these survival and death signals 

can be induced by a variety of external endocrine, paracrine, and autocrine 

factors, or any combination of the three (Amsterdam et al., 1999). Here we 

provide a general overview of the survival signals and death signals that 

affect granulosa cell fate within follicles, and some of the factors that influence 

these signals.

Survival Signals

The growth of follicles, or folliculogenesis, depends upon hormonal 

signals from the anterior pituitary to direct theca and granulosa cell growth 

while inhibiting apoptosis (Quirk et al., 2004). The gonadotropins, LH and 

FSH, are required at the antral stage of folliculogenesis to direct selection of 

tertiary follicles. During this time, one follicle of the cohort establishes its 

presence and becomes dominant, while subordinate follicles undergo atresia 

(Webb et al., 2007). One aspect influencing selection of the dominant follicle 

is the fact that FSH stimulates estradiol production by granulosa cells within 

this follicle, establishing its further growth and dominance (reviewed by 

Matsuda et al., 2012). For their part, the granulosa cells of selected follicles 

also secrete survival signals that promote growth (Matsuda et al., 2012). 

These signals include insulin-growth factor I (IGF-I) (Hirshfield, 1991; Webb et
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al., 2007). IGF-I promotes mitosis of granulosa cells, estradiol production and 

responsiveness to further FSH and LH stimulation by increasing gonadotropin 

receptor expression (Guthrie et al., 1998; Quirk et al., 2004). Paracrine and 

autocrine effects of estradiol seceretion by granulosa cells, in concert with 

IGF-I secretion, further enhance mitosis and differentiation of granulosa cells, 

while preventing apoptosis (Quirk et al., 2004; reviewed by Palter, 2011). In 

subordinate follicles undergoing atresia these survival signals diminish, the 

granulosa cells lose functionality, and ultimately undergo apoptosis. A loss of 

estradiol and IGF-I secretion in genetic knockout mice, for instance, triggers 

granulosa cell apoptosis, abnormal follicular development, and infertility 

(Baker etal., 1996; Britt et al., 2000; Dupont etal., 2000; Zhou et al., 1997). 

Other factors influencing granulosa cell fate include epidermal growth factor 

(EGF), basic fibroblast growth factor (bFGF), interleukin-6 (IL-6) and IL-13 

(Chun etal., 1995; Guthrie etal., 1998; Lynch et al., 2000; Tilly etal., 1992), 

which stimulate granulosa cell growth and proliferation, enhance 

folliculogenesis, and promote follicle selection and dominance.

Death Signals (Apoptosis)

Apoptosis is a biological process responsible for controlling cell 

numbers and tissue size, while concurrently providing protection from 

invasive cells (Tschopp et al., 1998; reviewed by Hengartner, 2000; Peter, 

2004). The term “apoptosis” was first coined by John Foxton Ross Kerr in the 

1970’s who defined the process as consisting of two stages: 1) the formation

10
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of apoptotic bodies, and 2) the phagocytosis of apoptotic bodies (Kerr et al., 

1972).

All cells are equipped with the machinery to trigger apoptosis but most 

often the process is avoided by the actions of survival signals (Alberts et al., 

2002; Kanamaru et al., 2012; Peter and Krammer, 1998). Apoptosis is 

principally executed by a class of intracellular cysteine proteases known as 

caspases, which become activated by a variety of intracellular (intrinsic 

pathway) or extracellular (extrinsic pathway) influences (Fernandes-Alnemri 

et al., 1995). All caspases are initially translated as inactive proteins 

containing a pro-domain (zymogens). Most caspases are commonly 

activated by: 1) other nearby caspases (caspase-8) or 2) autocatalytic 

cleavage by another active caspase (caspase cascade; caspase-3, -6 and -7) 

(Thornberry et al., 1997; Hengartner, 2000). Active caspases are proteolytic 

and cleave proteins having aspartate residues, inhibiting their biological 

function (Hengartner, 2000).

Intrinsic Pathway

The intrinsic (mitochondrial) apoptotic pathway integrates pro-apoptotic 

and anti-apoptotic signals within the target cell by apoptotic regulator proteins 

of the bcl-2 family (Quirk et al., 2004). The bcl-2 family includes pro-apoptotic 

proteins (Bax, Bad, Bim, Bid, Bok, Bcl-2-short) and anti-apoptotic proteins 

(Bcl-2, Bcl-2-long, Bcl-w) (Antonsson and Martinou, 2000; Quirk et al., 2004). 

In response to an insult or stress, the intrinsic mitochondrial pathway

11
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becomes activated, releasing cytochrome c into the cytoplasm. Cytochrome 

c, apoptosis-activating factor (Apaf)-1 and pro-caspase 9 form an 

apoptosome complex (Li et al., 1997). This complex cleaves pro-caspase-9 

to its activate form, which then activates caspase-3 and other downstream 

caspases (Hengartner, 2000). Other mitochondrial pro-apoptotic proteins 

include Smac-diablo and apoptosis inducing factor (AIF) (Susin et al., 19992; 

Du et al., 2000; Verhagen et al., 2000).

Extrinsic Pathway

Signaling molecules responsible for inducing apoptosis via the extrinsic 

pathway are mediated by transmembrane death receptors (Barnhart et al., 

2003; Thornburn, 2004). Several types of cytokines induce the extrinsic 

pathway in a variety of cells (e.g., Fas ligand, tumor necrosis factor, TRAIL, 

etc.), but for purposes of the current discussion about granulosa cells, we will 

focus only on the Fas ligand-Fas-mediated pathway. The Fas receptor is a 

42-52 kDa member of the tumor necrosis factor (TNF) super family and is 

thought to trigger the apoptotic death of granulosa cells during follicular 

atresia (Matsuda-Minehata et al., 2006; Porter et al., 2000; Vickers et al.,

2000).

The Fas-induced apoptotic pathway is characterized by the expression 

of the cytokine, Fas ligand (FasL; CD95), which binds to Fas receptor, 

causing trimerization of the ligand-receptor complex. Within the target cell, an 

adaptor protein known as the Fas-Associated Death Domain (FADD) protein

12
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binds to the cytoplasmic region of the Fas receptor, specifically the “death 

domain” region of Fas. This interaction between Fas and FADD results in the 

binding of pro-caspase 8, forming the Death-Inducing Signaling Complex 

(DISC). Formation of the DISC results in cleavage of pro-caspase 8 to 

activated caspase 8, initiating a signaling cascade that leads to apoptosis of 

the cell (Thornburn, 2004).

Counteracting the effects of pro-caspase-8 activation and the 

downstream stimulation of apoptotic mechanisms is the molecule known as 

cellular flice inhibitory protein (cFLIP) (Hu etal., 1997). Originally discovered 

as a viral apoptotic inhibitor (Thome et al., 1997), cFLIP is a labile, anti- 

apoptotic protein that competes with procaspase-8 for binding to FADD and 

the formation of the DISC. The structure of cFLIP is identical to pro-caspase- 

8 but it lacks the enzymatic region to trigger downstream death effects 

(Micheau, 2003; Oztiirk et al., 2012). The structural similarities between 

cFLIP and pro-caspase-8 enable cFLIP to competitively bind to FADD, 

preventing pro-caspase-8 binding, and thus inhibiting pro-caspase-8 

cleavage, activation and downstream apoptotic signaling.

Survival Signaling Pathways

Growth of ovarian follicles depends upon survival signaling pathways 

within granulosa cells to override potential death signals and prevent the 

occurrence of apoptosis. Two survival pathways of particular interest in

13
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granulosa cells include the Ras/mitogen-activated protein kinase (MAPK) and 

the phosphoinositide 3'-OH kinase (PI3K)/Akt pathways.

The MAPK/ERK Pathway

The MAPK pathway contributes to cell survival, proliferation, and 

differentiation of granulosa cells (Chang and Karin, 2001; Pearson et al.,

2001). Mammalian MAPK are divided into four classes- the extracellular- 

signal regulated kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), 

p38 proteins and ERK5 (Peter and Dhanasekaran, 2003; Shiota et al., 2003). 

ERK1/2 and ERK5 are survival kinases (Nishimoto and Nishida, 2006), 

whereas p38 and JNK are implicated as apoptotic kinases (Fey et al., 2012).

The MAPK pathways are activated in response to extracellular stimuli; 

the ERK pathways are activated by growth factors, while the JNK and p38 

pathways are activated by cytokines and cellular stress (Ip and Davis, 1998). 

All of these signaling cascades involve activation of intracellular MAP kinase 

kinases that then phosphorylate either the MAP kinases ERK1/2, JNK, p38 or 

ERK5. Phosphorylated MAPK act as second messengers and translocate to 

the nucleus where they regulate gene expression of survival and apoptotic 

proteins (Zeng et al., 2005). Ultimately, the fate of the cell is determined by 

the balance between survival and apoptotic signals; i.e. if survival signals 

outweigh apoptotic signals, cell survival prevails (Nagata, 1997; Jarpe et al., 

1998).

14
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An illustration of this delicate balance between survival and apoptosis 

is seen in porcine granulosa cells, wherein treatment with growth factors, 

such as FSH or fetal bovine serum (FBS), actually results in apoptosis if the 

phosphorylation of ERK1/2 (a survival signal) is inhibited (Shiota et al., 2003). 

Conversely, inhibition of the p38 pro-apoptotic pathway prevents peroxide- 

induced apoptosis in this same model (Shiota et al., 2003). Phosphorylation 

of JNK prompts apoptosis of granulosa cells, implicating JNK signaling in 

follicular atresia (Peter and Dhanasekaran, 2003). ERK5 enhances 

progesterone secretion by granulosa cells, but the effect of ERK5 

phosphorylation on granulosa cell fate is not known (Gao et al., 2011).

Overall, ERK1/2 phosphorylation generally prevents apoptosis of granulosa 

cells, but phosphorylation of JNK and p38 promote apoptosis and possibly 

contribute to follicular atresia.

The PI3K/Akt Pathway

The serine/threonine kinase Akt (also known as protein kinase B; PKB) 

was originally discovered as v-Akt, a retrovirus-associated oncogene from the 

AKT8 murine retrovirus (Staal, 1977). The molecule Akt is a key player in 

cell survival, metabolism, motility and gene expression associated with the 

PI3K pathway (Cantley, 2002). This pathway is activated in response to: 1) 

phosphorylation of receptor tyrosine kinases (RTKs) by growth factors, 2) 

stimulation of G-coupled receptors, and 3) activation of integrins (Fayard et 

al., 2005). Ligand-receptor interaction results in the activation of second 

messenger PI3K by phosphorylation. Phosphorylation of PI3K can also be
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achieved by interacting with the protein Ras, which is also associated with the 

MAPK pathway (Datta et al., 1999). The activation of PI3Ks further stimulate 

second messenger phosphoinosotides by phosphorylation (i.e. converting 

phosphatidylinosotide-4-5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5- 

triphosphate (PIP3) (Rameh and Cantley, 1999). The formation of PIP3 then 

facilitates recruitment of Akt to the plasma membrane and activates it by 

phosphorylation (Fayard et al., 2005).

This pathway and its interaction with the MAPK pathway are relevant 

to the fate of granulosa cells and follicular development because within 

bovine ovaries, levels of Akt, phosphorylated Akt (p-Akt), ERK and 

phosphorylated ERK (p-ERK) are all elevated in dominant follicles compared 

to subordinate follicles (Ryan et al., 2007). In addition, inhibition of the PI3K 

pathway impairs granulosa cell responsiveness to FSH and IGF stimulation 

(Ryan et al., 2008). This suggests both the MAPK and PI3K pathways have a 

critical role in the fate of granulosa cells within the follicle, and most likely 

influence the selection of dominant versus subordinate follicles during 

folliculogenesis.

Fas and the Follicle

A physiologic mechanism of atresia in follicles is the effect of Fas- 

induced apoptosis of granulosa cells (Hughes et al., 1991; Tilly et al., 1991). 

Both Fas and FasL are expressed in ovaries of mammals across most 

species, including humans, domesticated livestock and rodents (Dharma et
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al., 2003; Inoue et al., 2006; Kim et al., 1998; Quirk et al., 1995; Quirk et al., 

1998; Vickers et al., 2000). Differential expression of FasL and/or Fas among 

granulosa cells of follicles might influence the occurrence of apoptosis and 

follicular atresia.

In granulosa cells, Fas expression increases following pretreatment 

with the cytokines interferon gamma (IFNy) and tumor necrosis factor alpha 

(TNFa), causing the cells to be vulnerable to Fas-induced apoptosis (Quirk et 

al., 1998; Porter et al., 2000; Vickers et al., 2000). Inhibition of protein 

synthesis (via cycloheximide) also enhances granulosa cell sensitivity to Fas- 

induced apoptosis (Quirk et al., 1995; Quirk et al., 1998), implying that labile, 

anti-apoptotic proteins exist within granulosa cells to prevent apoptosis.

The expression of Fas has been evaluated in bovine follicles across 

the estrous cycle; expression of Fas mRNA is highest in granulosa cells of 

atretic, subordinate follicles and lowest in preovulatory follicles (Porter et al., 

2000). This suggests one aspect of follicular atresia is the upregulation of 

Fas mRNA in granulosa cells. However, it is noteworthy that granulosa cells 

of these same atretic follicles in vitro are generally resistant to Fas-induced 

apoptosis unless pretreated with cytokines such as IFNy or TNFa (Quirk et 

al., 1998; Porter et al., 2001). Additional factors must exist either within the 

granulosa cells, or within their follicular environment (i.e., in vivo) to affect 

sensitivity to Fas-induced apoptosis.
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Mechanisms that influence Fas expression

In vitro versus in vivo environment could have profound effects on the 

expression of the Fas receptor by granulosa cells. Fas expression and 

trimerization in response to FasL are both necessary for induction of the Fas- 

induced apoptotic pathway, but it is currently unclear what cellular 

mechanisms regulate Fas expression on the surface of granulosa cells. In 

liver epithelial cells (hepatocytes), cytoskeletal intermediate filaments 

influence Fas expression and Fas-induced cell signaling (Coulombe and 

Omary, 2002). Genetic knockout of the intermediate filament protein, keratin 

8 (K8), increases Fas expression and enhances the sensitivity of hepatocytes 

to Fas-induced apoptosis (Gilbert et al., 2001). Similarly, our laboratory has 

* determined that the absence of keratin 18 (K18) -containing intermediate 

filaments makes HeLa cells more sensitve to Fas-induced apoptosis (Sullivan 

et al., 2010). Interestingly, hepatocytes of K8-null mice also express less 

ERK1/2 and cFLIP compared to hepatocytes of wild-type mice, suggesting 

the expression of keratin intermediate filaments, the presence of cFLIP and 

the activation of ERK1/2 may together protect the cells from Fas-induced 

apoptosis (Gilbert et al., 2004).

Keratin Intermediate Filaments

Intermediate filaments (IFs) were first described by Ishikawa et al. in 

1968 as cytoskeletal scaffolds in the nucleus and cytoplasm in metazoans 

(Ishikawa et al., 1968; Kim et al., 2007). Together with microtubules and
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microfilaments, IFs comprise the third component of the cytoskeleton of most 

cells. Structurally, all IFs are comprised of a central helical rod flanked by N- 

terminal and C-terminal head and tail domains, respectively; the rod domains 

are conserved among subclasses, but terminal domains are conserved 

across all IFs (Figure 3) (Fuchs and Weber, 1994).

Head 1A IB  2A 2B

L12 L2

t  f  t  t
TrS Casp TrS Casp

Biochemical
regulation

Mutation
distribution

Figure 3 Tripartite structure of intermediate filaments (Coulom be and O m ary 2002).

The generally understood function of IFs is to provide structural integrity, but 

in recent years a more dynamic role for these structures has been suggested, 

including the modulation of apoptosis, responsiveness to physiologic stress, 

wound healing, facilitating cell growth and mitosis, regulating tissue polarity 

and influencing tissue remodeling (Moll et al., 2008).

The keratins are a subclass of IFs occurring as heterodimers 

composed of a type I (acidic; numbered 9-20) and type II (basic; numbered 1- 

8) filament. Keratin 8/18 (K8/K18) IFs are considered characteristic of simple 

epithelia (including granulosa and theca cells of follicles), immortalized cell
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lines and carcinomas; and they are the first keratin proteins expressed during 

embryonic development (Moll et al., 1982; Jackson et al., 1980).

In recent years, investigators have discovered many novel functions for 

keratin IFs beyond their well-accepted role in providing structural support to 

the cell. For instance, there is current thinking that K8/K18 IFs sequester the 

activity of intracellular kinases, especially following cellular stress. Essentially 

the filaments provide an abundance of serine residues within their structure, 

serving as phosphorylation substrates or “phosphate sponges” for stress- 

activated kinases (e.g., Akt). This action prevents the activation of 

downstream pathways by these stress kinases that might otherwise lead to 

apoptosis (Ku and Omary, 2006). The solubilization and polymerization 

activities of the keratins are directly influenced by this serine phosphorylation 

in the head and tail domains of K8 (Ser-23/Ser-73/Ser-431) and K18 (Ser- 

33/Ser-52) (Omary et al., 1998; Coulombe and Omary 2002; Owens and 

Lane, 2003; Omary et al., 2006). In this manner, the sheer abundance of the 

filaments with their multiple phosphorylation sites re-direct the activities of 

apoptotic kinases away from downstream death-signaling mechanisms (Ku 

and Omary, 2001). Interestingly, K8 and K18 also have phosphorylation sites 

that are recognized by MAPK (Galarneau et al., 2006) and cell cycle 

progression 14-3-3 proteins (Liao and Omary, 1996) The Ser74 and Ser431 

phosphorylation sites on K8 are associated with ERK1/2 (Ku and Omary, 

1997) and p38 (Ku et al., 2002). Liao and Omary demonstrated that K8/K18 

hyperphosphorylation during the S and G2/M phases of the cell cycle result in
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14-3-3 protein binding, that in turn, activate PI3K and MAPK pathways (Liao 

and Omary, 1997). Thus K8/K18 IFs within cells may activate cell 

proliferation pathways in response to stress signals as a protective 

mechanism.

Beyond these measures, K8/K18 filaments protect cells from 

apoptosis, stress and injury by impairing the cell surface expression of Fas 

and the downstream activation of caspases (Gilbert et al., 2001). Inhibition of 

caspase activation occurs, in part, by enhancing the expression and 

activation of the anti-apoptotic proteins cFLIP and ERK1/2 (Gilbert et al., 

2004). Genetic knock-down of K8 reduces endogenous c-FLIP expression 

and decreases phosphorylation of ERK1/2, making mouse hepatocytes three 

to four times more sensitive to FAS-induced apoptosis than their wild-type 

counterparts (Gilbert et al., 2001; Gilbert et al. 2004). Thus, K8/K18 filaments 

are thought to provide resistance to Fas-induced apoptosis by suppressing 

Fas expression and caspase activation, while concomitantly activating 

survival pathways and promoting cell proliferation.
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K8/K18 Filaments and Granulosa Cells

Keratins are expressed in granulosa cells of bovine follicles across the 

developmental stages, but their role in folliculogenesis is unknown 

(Czernobilsky et al., 1985; Gall et al., 1992; Santini et al., 1993; Townson et 

al., 2010; van den Hurk et al., 1995). The K8/K18 filaments are expressed in 

granulosa cells of the follicle, but their expression in atretic follicles is less 

evident than growing or recently ovulated follicles (Townson et al., 2010). 

Additionally, the relative expression of K8/K18 filament expression in 

granulosa cells is inversely proportional to the number of cells undergoing 

apoptosis as observed by Cyto-DEATH immunodetection (Townson et al., 

2010). This suggests the onset of apoptosis of granulosa cells and the 

occurrence of follicular atresia are associated with a loss of K8/K18 filaments. 

Others have shown Fas-induced apoptosis in granulosa cells is augmented 

by inhibition of cFLIP and inactivation of ERK1/2 (Matsuda et al., 2008; Shiota 

et al., 2003). At present, however, no one has determined whether K8/K18 

filaments modulate Fas-induced apoptosis of granulosa cells of follicles 

through cFLIP expression and/or ERK1/2 phosphorylation as has been 

described in simple epithelial cells of other tissues (Gilbert et al., 2001; Gilbert 

et al., 2004).
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Objectives and Hypotheses

The present study proposes there is a functional connection between 

K8/K18 filament expression, apoptosis-inhibition and survival signaling in 

granulosa cells influencing their vulnerability to apoptosis. The current study 

investigated the above-described relationships in the context of Fas-induced 

apoptosis and follicular atresia.

The objectives of the study were to 1) determine the relative 

expression of K8/K18 filaments in granulosa cells of human and bovine origin 

and 2) identify putative cellular mechanisms by which granulosa cells resist 

Fas-induced apoptosis, specifically determining whether or not K8/K18 

filaments have a role in this protection.

We postulated K8/K18 expression, in part, accounts for the relative 

resistance of granulosa cells to Fas-induced apoptosis by: 1) decreasing the 

cell surface expression of Fas, 2) enhancing apoptosis-inhibiting proteins, and 

3) activating intracellular pro-survival pathways.
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CHAPTER I

INVESTIGATION OF THE ROLE OF KERATIN 8/18 INTERMEDIATE 

FILAMENTS ON THE FATE OF GRANULOSA CELLS

Introduction

Infertility is an ever-growing concern of today's agricultural industry 

(Lucy, 2001). For dairy operations, profitability depends upon the ability of 

the cow to give birth to a live calf each year. Follicular atresia is one aspect 

of ovarian function that contributes to poor reproductive performance and may 

result in infertility (Lucy, 2002).

Apoptosis of granulosa cells is contributing factor to follicular atresia 

within the ovary, preventing follicle maturation and ovulation, and possibly 

impairing fertility in females (Hughes and Gorospe, 1991; Tilly et al., 1991).
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The extrinsic pathway of apoptosis, activated by cytokines and other 

influences external to the targeted cell, is thought to contribute to the process 

of follicular atresia (Townson and Combelles, 2012). The cytokine Fas ligand 

(FasL) and its corresponding receptor, Fas, for instance, are elevated in 

atretic follicles compared to healthy follicles (Kim et al., 1998; Vickers et al., 

2000; Porter et al., 2001; Inoue et al., 2006). However, cultured granulosa 

cells are typically resistant to Fas-induced apoptosis unless first pretreated 

with tumor necrosis factor (TNF) and interferon-gamma (IFN) (Quirk et al., 

1995), which is thought to increase the surface expression of Fas (Quirk et 

al., 1998). It is therefore conceivable that Fas-induced apoptosis of granulosa 

cells contributes to follicular atresia, and that cytokines such as TNF and IFN 

facilitate this process.

The targeted and selective loss of granulosa cells by apoptosis without 

accompanying collateral damage to adjacent cells is a characteristic aspect of 

follicular atresia. Apoptosis is also a hallmark of the FasL-Fas system, by 

which the immune system establishes immune tolerance and the elimination 

of lymphocytes targeted against self-antigens. The cytokines TNF, TRAIL, 

and their corresponding receptors are additional influences, similar to FasL 

and Fas, which potentially trigger apoptosis and induce follicular atresia in 

certain species (Prange-Kiel et al., 2001; Xiao et al., 2002; Inoue et al., 2003). 

However, beyond these hormonal influences on granulosa cell viability within 

follicles, there are structural, cytoskeletal influences to consider. In the last 

decade, for instance, a number of studies have implicated the cytoskeletal
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elements (i.e., microtubules, microfilaments, and intermediate filaments) as 

profoundly affecting follicular growth, potentially impairing ovulation, and 

causing cystic follicles (Salvetti et al., 2004; Ortega et al., 2007; Salvetti et al., 

2010).

Microtubules, microfilaments, and intermediate filaments collectively 

influence the activities of most cells, including the granulosa cells within 

follicles. Microtubules regulate steroidogenesis (Chen et al., 1994), but they 

also determine cell shape and affect cytoplasmic movement of organelles 

within granulosa cells (Sutovsky et al., 1994). Microfilaments drive granulosa 

cells toward differentiation (i.e., luteinization) (Amsterdam and Rotmensch, 

1987) and facilitate death (Amsterdam et al., 1997). Under apoptotic 

conditions, for example, microfilaments within granulosa cells undergo 

rearrangement to compartmentalize the steroidogenic machinery to the 

perinuclear region while directing other proteolytic activities to the apoptotic 

bodies (Amsterdam et al., 1997). The intermediate filaments, including 

vimentin, the cytokeratins, and desmin, influence cell mitosis, follicular 

atresia, and de-differentiation of cells of the follicle (van den Hurk et al., 1995; 

Khan-Dawood et al., 1996; Loffler et al., 2000). Most recently, our laboratory 

has identified intermediate filaments, particularly keratin 8 and keratin 18 

(K8/K18) filaments, as possible intrinsic modulators of granulosa cell 

apoptosis during folliculogenesis (Townson et al., 2010).

The K8/K18 filaments are considered “stress filaments” characteristic 

of most simple epithelia, immortal cell lines and carcinomas. They provide
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structural integrity and mechanical stability to cells via cell-cell junctions (Moll 

et al., 2008; Waschke, 2008). Recently, dynamic features of these filaments 

have become evident, suggesting the K8/K18 filaments also modulate death 

signaling by regulating cytokine receptors, enhancing anti-apoptotic proteins 

and activating intracellular survival pathways (Gilbert et al., 2001; Marceau et 

al., 2001; Eriksson et al., 2009; Sullivan et al., 2010). Genetic knockdown of 

K8 in mouse hepatocytes, for instance, increases the cell surface expression 

of Fas and up-regulates caspase activation (Gilbert et al., 2001). The 

expression of the anti-apoptotic protein cellular flice inhibitory protein (cFLIP; 

also known as CFLAR) and the phosphorylation of extracellular regulated 

kinases 1 and 2 (ERK1/2) are also impaired in these hepatocytes (Gilbert et 

al., 2004). As a result, the K8-null hepatocytes are three to four times more 

sensitive to Fas-induced apoptosis (Gilbert et al., 2001; Gilbert et al., 2004). 

The K8/K18 filaments within granulosa cells of follicles might orchestrate 

similar aspects of cellular fate, possibly enabling the cells to evade Fas- 

induced apoptosis by impairing Fas expression, augmenting cFLIP 

expression and/or ERK1/2 phosphorylation.

The objectives of the current study were to investigate the above­

described possibilities by: 1) determining the relative expression of K8/K18 

intermediate filaments within granulosa cells, 2) identifying cellular 

mechanisms by which granulosa cells resist Fas-induced apoptosis, and 3) 

determining if K8/K18 filaments have a role in this resistance. For the 

majority of this work, immortal cells established from a granulosa cell tumor,
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the KGN cell line, were utilized. The cells retain many physiological attributes 

of granulosa cells, including responsiveness to FSH through a functional FSH 

receptor (Nishi et al., 2001). Additional experiments with primary cultures of 

granulosa cells derived from bovine ovarian follicles were then initiated for 

comparative purposes.
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Materials and Methods

Animal Care and Use

Follicles from bovine ovaries were obtained from local slaughterhouse 

facilities or research cows at the Fairchild Dairy Teaching and Research 

Center. A protocol for this purpose was approved by the UNH Animal Care 

and Use Committee (IACUC) # 120104.

Cells and culture conditions

KGN cell line

The human granulosa cell tumor line, KGN, was generously provided 

by Dr. Fukuzawa (RIKEN Cell Bank, Koyadai, Japan) through our 

collaborator, John S. Davis (University of Nebraska Medical Center, Omaha, 

NE). The KGN cells were maintained in DMEM/F12 (1:1; Life Technologies, 

Grand Island, NY) supplemented with 10% FBS (JRH Biosciences, Lenexa, 

KS) at 37°C with 5% CO2 and 95% air, with 95% humidity.

Primary bovine granulosa cells

The bovine ovaries obtained from slaughterhouse facilities and the

Fairchild Dairy were transported to the laboratory at 25°C in sterile saline, and

then rinsed in ethanol, Betadine solution and PBS before dissecting all

follicles s 10 mm in DMEM/F12 + 2 pL/mL gentamicin. Follicular fluid from

each of the follicles was removed by aspiration, the follicles were bisected
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and then gently scraped to release the granulosa cells. The granulosa cells 

were washed three times for 10 minutes at 25 °C at 500, 250 and 175 x g to 

remove red blood cells. Once washed, the cells were counted using the 

Trypan Blue exclusion method then seeded in plastic cultureware and 

maintained in DMEM/F12 (1:1; Life Technologies, Grand Island, NY) 

supplemented with 10% FBS (JRH Biosciences, Lenexa, KS) at 37°C with 5% 

C02 and 95% air, with 95% humidity.

Culture conditions

The granulosa cells (KGN and bovine) were either seeded in 96-well 

plates (BD Biosciences, San Jose, CA) at 1x104 cells/well for Caspase-Glo 

3/7, CellTiter 96 and In-Cell Western assays, seeded in 6-well plates 

(Corning, Corning, NY) at 3x105 cells/well for immunoblotting experiments or 

seeded in microchamber slides (Nunc, Rochester, NY) at 1x104 cells/well and 

T75 or T150 vented flasks (BD Biosciences, San Jose, CA) at 5x105 cells and 

1x106 cells/flask, respectively, for immunofluorescence and flow cytometry 

analysis. In all cases, the granulosa cells were grown to 70% confluency 

prior to the onset of treatments. For siRNA experiments, conditioned culture 

medium was exchanged for antibiotic-free DMEM/F12 medium + 10% FBS, 

and immediately prior to cytokine treatments, exchanged for again for serum- 

free DMEM/F12 medium.
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Immunofluorescent visualization of K8/K18 intermediate filaments

Following culture, granulosa cells grown in microchamber slides were 

rinsed twice with PBS and then fixed for 20 minutes at room temperature with 

2% paraformaldehyde (PFA) in a microtubule-stabilizing buffer (100 mM 

HEPES, pH 7.31; 1 mM MgS04-7H20; 1 mM EGTA; 0.2% Triton X-100). 

Subsequently, the fixed cells were permeabilized for 20 minutes in ice-cold 

100% methanol. After permeabilization, the cells were washed three times 

with PBS + 0.1% BSA and labeled with mouse anti-human K18-FITC- 

conjugated antibody (CY90; Sigma-Aldrich, St. Louis, MO) diluted 1:100 in 

PBS + 1% BSA and Rhodamine Phalloidin (Life Technologies; Grand Island, 

NY) diluted 1:400 in PBS + 1% BSA for 1 hour at 37°C in a humidified 

chamber. In previous work, the dimerization of K18 protein with K8 protein to 

form a K8/K18 heterodimeric filament bovine granulosa cells and luteal cells 

was verified (Townson et al., 2010; Duncan et al., 2012). Thus, 

immunological targeting of K18 for the detection of K8/K18 filaments in the 

granulosa cells was considered adequate. For a negative control, the cells 

were exposed to a mouse anti- human IgG-FITC-conjugated antibody 

(Sigma-Aldrich, St. Louis, MO) diluted 1: 100 in PBS + 1% BSA as a 

substitute for the primary antibody. The slides were washed three times with 

PBS + 0.1% BSA, then mounted on coverslips with ProLong® Gold Antifade 

reagent containing DAPI (Life Technologies, Grand Island, NY).

Photographic Images of the K8/K18 filament immunostaining were collected 

using an Olympus BH2-RFC upright fluorescent microscope (Center Valley,
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PA), Qimaging QICAM monochrome digital camera (Surrey, BC, Canada) 

and ImagePro Insight software (Media Cybernetics, Bethesda, MD).

Flow cytometric quantification of Fas surface and K18 expression

Cultured cells were trypsinized using Cellgro 0.25% Trypsin-EDTA

(Corning, Corning, NY) and fixed for 20 minutes at room temperature with 2%

paraformaldehyde in a microtubule-stabilizing buffer (100 mM HEPES, pH

7.31; 1 mM MgS04-7H20; 1 mM EGTA; 0.2% Triton X-100). For Fas surface

staining, the cells were stored in paraformaldehyde; for K18 staining, the cells

were fixed with paraformaldehyde, permeabilized in ice-cold 70% ethanol for

20 minutes and then stored at -20°C. For antibody labeling, both types of cell

preparations were washed three times with PBS + 0.1% BSA, and then either

labeled overnight at 4°C with mouse anti-human Fas (CH11; EMD Millipore,

Darmstadt, Germany) antibody diluted to 20 pg/mL in 10% normal goat serum

+ PBS + 1% BSA or labeled for 1 hour at 37°C with mouse anti-human K18-

FITC-conjugated antibody (Sigma-Aldrich, St. Louis, MO) diluted 1:100 in

PBS + 1% BSA. Separate preparations labeled with mouse anti-human IgG-

FITC-conjugated antibody (Sigma-Aldrich, St. Louis, MO) diluted 1:100 in

PBS + 1 % BSA served as negative controls. For cells labeled with Fas

antibody, the cells were subsequently washed three times with PBS + 0.1%

BSA, and then incubated for 1 hour at 37°C with Alexa Fluor® 488 (Life

Technologies, Grand Island, NY) diluted 1:200 in 10% NGS + PBS + 1%

BSA. For both Fas- and K18-labeled cells, the cells were washed three times

with PBS + 0.1% BSA and then analyzed using a 4 color, dual laser FACS
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Calibur Flow Cytometer (BD Biosciences, San Jose, CA), quantifying 10,000 

cells. Data were collected using CellQuest software (BD Biosciences; San 

Jose, CA) and then analyzed using WinMDI (Joe Trotter; Purdue University, 

West Lafayette, IN) to quantify the cell surface expression of Fas and K8/K18 

filament expression.

Induction of Fas-mediated apoptosis

Granulosa cells were cultured and exposed to pretreatments of 

cycloheximide (CHX; 0.25 pg/mL; Sigma-Aldrich, St. Louis, MO), the MEK1/2 

inhibitor PD98059 (30 pM; Cell Signaling Technologies, Danvers, MA) or the 

Akt inhibitor Wortmannin (100 nM; EMD Millipore, Darmstadt, Germany) for 2 

hours in serum-free culture medium. After pretreatment, the cells were 

exposed to a Fas-activating antibody (1 pg/mL; clone CH11; EMD Millipore, 

Darmstadt, Germany) or Staurosporine (1 pM; MP Biomedical, Santa Ana, 

CA) as a positive control, to induce apoptosis. The cells were exposed to the 

above treatments for 8 and 24 hours, at which time the incidence of apoptosis 

was measured by caspase 3/7 activity using a Caspase-Glo® 3/7 Assay or a 

cell viability Cell Titer 96 (MTS) assay. These assay were conducted 

according to the manufacturer’s instructions (Promega, Madison, Wl).

Immunoblot analysis for Fas. cFLIP. cleaved PARP and B-Actin

Nearly confluent cells from the above-described experiments were 

washed twice with ice-cold PBS and harvested in lysis buffer (10mM Tris- 

HCL; 1mM EDTA; 1mM EGTA; 100mM NaCI; 1% Triton X-100; 0.5% Nonidet
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P-40, pH 7.4) containing kinase, protease and phosphatase inhibitor cocktails 

(Sigma-Alrich, St. Louis, MO). The cells were scraped, collected, and 

sonicated for 3 seconds then resuspended in 2X SDS loading buffer (100 mM 

Tris-CI, pH 6.8 + 4% SDS, 0.2% bromophenol blue, 20% glycerol, 200 mM 

DTT) and denatured at 95°C for 5 minutes. Total cellular proteins were 

separated by 12.5% SDS-PAGE and then transferred to polyvinylidene 

difluoride (PVDF) membranes (EMD Millipore,Darmstadt, Germany). 

Immunoblotting was performed using antibodies to detect human cFLIP (also 

known as CFLAR) (rabbit anti-human CFLAR; Sigma Aldrich, St. Louis, MO) 

and human Fas (clone C-20; Santa Cruz Biotechnology, Santa Cruz, CA) to 

determine the effect of cytokine and inhibitors on expression of cFLIP and 

Fas. Membranes were stripped and reprobed for cleaved human poly ADP 

ribose polymerase (PARP) (# 9542, Cell Signaling Technology, Danvers,

MA), involved in DNA depletion and DNA repair during cell death, to validate 

apoptotic activity and P-actin (clone AC-15; Sigma Aldrich, St. Louis, MO) for 

normalization of protein loading.

Short interfering RNA (siRNA) knockdown of K8/K18

Granulosa cells were transiently transfected with 6-10 pmol KRT8 and 

KRT18 siRNA constructs according to RefSeq numbers: NM_001033610.1 

and NM_001192095.1 (siRNA ID S444557 and S444560; Silencer® Select 

siRNA, Ambion Inc., Foster City, CA). Transfection was achieved using 

Lipofectamine™ RNAiMAX in OptiMEM® Reduced Serum Media for final 60- 

100 nM RNAi duplexes according to the manufacturer’s instructions (Life
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Technoloies, Grand Island, NY). Briefly, cells were grown to 70% confluency 

then switched to antibiotic-free DMEM/12 + 10% FBS before siRNA- 

Lipofectamine duplexes were introduced. The cells were also exposed to a 

non-targeting siRNA (Silencer® Select Negative Control #1; Ambion Inc., 

Foster City, CA) and Lipofectamine™ alone as negative controls. Optimal 

siRNA and Lipofectamine concentrations were established and validated 

using an In-Cell Western assay according to the manufacturer’s instructions 

described briefly below (Cell Signaling Technology, Danvers, MA; LI-COR®, 

Lincoln, NE).

Validation of K8/K18 knockdown (In-Cell Western Assay)

After 72 hours of transfection, the siRNA duplexes were removed from 

the culture medium, the cells were washed and then fixed and permeabilized 

for 10 minutes in ice-cold 100% methanol. Following permeabilization, the 

cells were washed three times in PBS, then exposed to blocking for one hour 

at room temperature (Blocking Buffer: PBS + 5% normal goat serum + 0.3% 

Triton X-100). Subsequently, the cells were incubated overnight at 4°C with a 

primary antibody cocktail of mouse anti- human K18 (CY90; Sigma-Aldrich,

St. Louis, MO) and rabbit anti-human P-Actin (13E5, Cell Signaling 

Technolgy, Danvers, MA) diluted 1:800 and 1:200, respectively, in antibody 

dilution buffer (PBS /1%  BSA / 0.3% Triton X-100), respectively. After 

washing three times for five minutes each in PBS, the granulosa cells were 

incubated for 1 hour at room temperature in the dark with a cocktail of 

fluorochrome-conjugated secondary antibodies (goat anti-mouse IgG H+L
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DyLight 800 and goat anti- rabbit IgG H+L DyLight 680, Cell Signaling 

Technology, Danvers MA) diluted 1:2000 and 1:1000, respectively, in 

antibody dilution buffer. After washing three times for five minutes each, 

plates containing the cells were scanned on the LI-COR® Odyssey® Classic 

Infrared Imaging scanner (LI-COR, Lincoln, NE) at 680 and 800 nm in the 

infrared color spectrum. Staining intensity for K18 was normalized to staining 

intensity for p-actin using the provided scanning (LI-COR, Lincoln, NE) 

(protocol adapted from In-Cell Immunofluoresence protocol, Cell Signaling 

Technology, Danvers, MA). Expression of K18 (relative to P-actin) provided a 

method to normalize staining intensity across treatments to account for 

differences in seeding density, possibly as a result of cytotoxicity.

Statistical analysis

All experiments were repeated three to six times, using a fresh aliquot 

of cells (KGN) or bovine follicles for each experiment. Data were analyzed 

initially by one-way or two way analysis of variance (ANOVA), followed by a 

Tukey’s post-test for multiple comparisons. Differences among means at a 

value of P<0.05 were considered statistically significant.
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Results

K18 and B-Actin expressed in KGN cells

Immunofluorescence for K18 and p-actin indicated KGN cells express 

abundant K8/K18 and p-actin filaments (Figure 4).

Figure 4  Representative image of immunofluorescent staining in cultured KGN cells. (A ) 
DAPI, (B ) K18 filaments stained with F ITC  (green), (C ) P-Actin stained with Phalloidin (red) 
and (D ) merged image (200X, bars represent 20 microns).
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High K18 expression but low Fas surface expression on KGN Ceils

Flow cytometry analysis confirmed ~91% of the KGN cells express K18 

protein, yet only 24% of the cells express Fas on the cell surface (Figure 5). 

Mean fluorescent intensity measures (an indication of fluorescence per cell) 

were similarly high for K18 expression, but low for Fas expression (Fig. 5D).
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Figure 5 Representative flow cytometric analysis of K18 and surface Fas staining in cultured 
KGN cells (A ,B), Percentage of cell population K18+ and surface Fas+ (C) and mean  
fluorescence intensity (D) in KGN cells. Representative histograms and dot plots of 
fluorescence intensity vs. number of recorded events for (A ) K18 and (B) surface Fas 
expression. (C ) Percentage (% ) of KGN cell population (±SEM ) stained positively for K18 and 
surface Fas. (D ) M ean fluorescence intensity (±S EM ) o f K18 and surface Fas staining in KGN  
cells. (n=3 experiments).
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Inhibition of protein synthesis sensitizes KGN cells to Fas-induced 
apoptosis

KGN cells exposed to the protein synthesis inhibitor, CHX, prior to 

treatment with the Fas activating antibody, CH11, augmented Fas-induced 

apoptosis (Figure 6). Treatment with CH11 or CHX alone, however, had no 

effect. Inhibition of de novo protein synthesis with CHX provoked a 10-fold 

increase in Fas-induced apoptosis, similar to the chemotherapeutic agent 

Staurosporine.
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Figure 6 Fas-mediated apoptosis in cultured KGN cells, quantified by caspase 3 /7  activity 
(RLU; ±SEM ) following protein synthesis inhibition. The cultures were exposed to protein 
synthesis inhibitor C H X  (0.25 pg/mL) for 10 hours and Fas (1 pg/mL activating antibody 
C H 1 1) for a  period of 8 hours (n=6 experiments; different letters denote differences, p< 0 .05).
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Fas and cFLIP expression following Fas-induced apoptosis of KGN cells

No overt changes in the expression of Fas or cFLIP protein were 

observed following exposure of cultured KGN cells to CHX or CH11 (Fas 

activating antibody) (Figure 7 A). Conversely, Fas-induced apoptosis by these 

treatments was confirmed by detection of PARP and cleaved PARP (Figures 

7A &B). Confirming the Caspase-Glo 3/7 assay results above, the combined 

treatment of CHX+CH11 caused a 2-fold increase in cleaved PARP 

compared to the control cultures.
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Figure 7 Immunodetection of Fas, cFLIP, cleaved PAR P and p-Actin following exposure to the 
protein synthesis inhibitor C HX (0.25 pg/mL) and Fas stimulation (1 pg/niL activating antibody 
C H11) in KGN cells. A . Representative immunodetection of Fas, cFLIP, cleaved PAR P and P- 
Actin following treatments. B. Average expression of Fas, cFLIP and cleaved PA R P (±S E M ) 
relative to p-Actin following treatment (n=3 experiments, different letters denote differences, 
p<0.05).
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Inhibition of ERK1/2 and Akt fails to sensitize KGN cells to Fas-induced
apoptosis

Inhibition of the MAPK pathway had no effect on Fas-induced 

apoptosis (Figure 8). Conversely, inhibition of the PI3K pathway provided 

modest protection from Fas-induced apoptosis (Figure 9).
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F igure 8  Induction of Fas-mediated apoptosis in cultured KGN cells, quantified by 
caspase 3/7 activity (RLU; ±S EM ) following ERK 1/2 inhibition. The cultured cells were  
exposed to ERK1/2 inhibitor P D 98059 (30 pM) and C H X  for 10 hours and Fas 
activating antibody for 8 hours (n=3 experiments; different letters denote differences, 
P<0.05).
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Figure 9 Induction of Fas-mediated apoptosis in cultured KGN cells, quantified by 
metabolic activity (M TS  assay; ±S EM ). The cultured cells w ere exposed to Akt inhibitor 
Wortmannin (100 nM) and C H X  for 26  hours and Fas activating antibody for 24  hours 
(n=3 experiments; different letters denote differences among treatments, apostrophes 
denote differences between without and with Wortmannin within treatment groups; 
P<0.05).
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Genetic downrequlation of K8/K18 filaments (siRNA) enhances Fas- 
induced apoptosis of granulosa cells

For the KGN cells, optimized treatment conditions after 72 hours of 

transfection were 10 pmol KRT8 and KRT18 siRNA combined with 0.3 pL 

Lipofectamine RNAiMAX (100 nM siRNA duplex) (Figure 10A), which resulted 

in 30% downregulation of K18 expression compared negative controls (Figure 

10B). For primary cultures of bovine granulosa cells, optimal transfection 

conditions consisted of 6 pmol KRT18 siRNA combined with 0.3 pL 

Lipofectamine RNAiMAx (60 nM siRNA duplex), which reduced K18 

expression by 65% expression (Figure 10B).
Bovine 

Granulosa cells

10 pmol KRT8 + 
KRT18 SiRNA

10 pmol Negative 
Control siRNA

Negative Control

KGN cells

6 pmol KRT18 SiRNA

6 pmol Negative 
Control siRNA

Negative Control

B.
1.2 ■  KGN 

□  Bovine GC

Negative Control Negative Control siRNA KRT8/13 siRNA

Figure 10 Immunodetection of K18 expression in granulosa cells mock transfected or 
transfected with 100 nM (KGN cells) or 60  nM (bovine granulosa cells) siR N A  to K RT8  
and18. A. Representative In-Cell W estern dual detection of K18 protein (green) and (3-Actin 
protein (red) following K R T8/18 siRNA. Negative controls consisted of cells transfected with 
equimolar concentrations of a non-targeting siRNA or Lipofectamine™ alone B. 
Quantification of K18 relative to (3-actin expression following K RT8/18-siR NA  transfection. 
Apostrophes denotes differences within cell types (P<0.05; KGN, n=3 experiments; bGC, n=1 
experiment).
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Genetic knock-down of the K8/K18 filaments with siRNA enhanced 

Fas-induced apoptosis compared to negative control (i.e. scrambler siRNA) in 

KGN cells (Figure 11).
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F igure 11 Induction of Fas-mediated apoptosis measured by caspase 3 /7  activity (RLU; 
±SEM ) following siRNA transfection with a negative control siRNA and K RT8 and 18 siRNA  
in cultured KGN cells (n=3 experiments; different letters denote differences, P< 0 .05).
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Discussion

During follicular atresia, discrete populations of granulosa cells within 

the follicle undergo apoptosis. However, the mechanisms regulating the cell- 

specificity of this process are unclear (Tilly et al., 1991). Previously, we 

suggested the prevalence and the cell-specificity of K8/K18 filaments within 

the granulosa cells might influence their vulnerability to apoptosis (Townson 

et al., 2010). Here, we demonstrated, for the first time, that granulosa cells 

are indeed more sensitive to Fas-induced apoptosis when K8/K18 filament 

expression is impaired. The reduction of K8/K18 filament expression in the 

granulosa cells was achieved using siRNA transfection, but similar effects 

have been observed in other types of non-ovarian epithelial cells in knockout 

mouse models or immortal cell lines (Caulin et al., 2000; Gilbert et al., 2001; 

Gilbert et al., 2004; Sullivan et al., 2010). In the K8 knockout mouse, for 

example, hepatocytes lacking K8/K18 filaments express more Fas on the cell 

surface, but also express less cFLIP, ERK1/2 and Akt intracellularly, which 

make them two times more sensitive to Fas-induced apoptosis than 

hepatocytes from wild-type mice. Essentially the K8/K18 filaments are 

thought to orchestrate the fate of epithelial cells by suppressing death 

signaling, while enhancing survival signals (Gilbert et al., 2001; Gilbert et al., 

2004). The K8/K18 filaments within granulosa cells of follicles might similarly 

dictate cellular fate, possibly by enabling the cells to evade Fas-induced 

apoptosis through similar mechanisms.
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The objectives of the current study were to determine the expression of 

K8/K18 filaments in granulosa cells, identify possible protective mechanisms 

by which granulosa cells resist apoptosis, and determine if K8/K18 filaments 

have a role in such protection. The results of this study support the concept 

that K8/K18 filaments influence granulosa cell fate, but whether they augment 

cFLIP expression and/or downstream survival signaling remains unclear.

Both KGN cells and primary cultures of bovine granulosa cells abundantly 

express K8/K18 filaments, and this abundance of filament expression was 

accompanied by a corresponding lack of Fas expression, at least in KGN 

cells. Whether or not these factors alone prevented Fas-induced apoptosis is 

uncertain, but our overall observations confirm those of previous studies. 

Namely, others have shown that cultured granulosa cells are extremely 

resistant to Fas-induced apoptosis (Quirk et al., 1998; Mezzanzanica et al., 

2004; Quirk et al., 2004; Matsuda et al., 2008). The current study also 

confirmed reports of others (Quirk et al., 1998; Matsuda et al., 2008) that 

cultured granulosa cells express labile protein(s), which in part provide 

protection against Fas-induced apoptosis. The cells are resistant to Fas- 

induced apoptosis unless pretreated with a protein synthesis inhibitor such as 

CHX (Quirk et al., 1998), or exposed to cytokines in combination with Fas 

ligand, such asTNF and IFN (Quirk etal., 1998; Porter etal., 2001). In the 

current work in which CHX augmented Fas-induced apoptosis, there was no 

effect of CHX on the anti-apoptotic protein, cFLIP, or the expression of total 

Fas as detected by immunoblot analysis. This implies that other labile
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survival protein(s), besides cFLIP and Fas, are expressed by granulosa cells 

to protect them from Fas-induced apoptosis.

Using KGN cells, we explored the possibility that signaling through 

MAPK and PI3K pathways (growth and stress activated pathways, 

respectively) might prevent Fas-induced apoptosis. Inhibition of the MAPK 

pathway, using the ERK1/2 inhibitor, had no clear effect on Fas-induced 

apoptosis. Surprisingly, inhibition of the PI3K pathway, using the Akt inhibitor, 

Wortmannin, actually enhanced the metabolic activity of the KGN cells, 

suggesting that although this pathway had no effect on Fas-induced 

apoptosis, other pathways affecting cellular metabolism become activated in 

response to Akt inhibition. Nevertheless, granulosa cell susceptibility to Fas- 

induced apoptosis is evidently not governed by the ERK1/2 or Akt pathways.

To determine overall whether K8/K18 filaments protect granulosa cells 

from Fas-induced apoptosis, the expression of the filaments was 

experimentally impaired using siRNA constructs. Knockdown of K8/K18 

expression was evident in both KGN cells and primary cultures of bovine 

granulosa cells, although the KGN cells required a higher concentration of 

siRNA to achieve measurable knockdown. These cells also appeared to be 

more tolerant of siRNA transfection than the primary cultures of bovine 

granulosa cells. For the bovine granulosa cells, the In-Cell Western assays 

revealed cytotoxicity effects, evident from lower cell density following KRT18 

siRNA transfection compared to those cells transfected with the non-targeting 

(i.e. scrambler) siRNA. Basal caspase activity (a measure of non-targeting
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siRNA -induced apoptosis) was also higher in the primary cultures of 

granulosa cells compared to KGN cell cultures. However, both the KGN cells 

and bovine granulosa cells became vulnerable to Fas-induced apoptosis 

following siRNA knockdown, providing the first evidence that K8/K18 

filaments influence granulosa cell resistance to apoptosis. The cellular 

mechanisms responsible for this protection (i.e., Fas reception and trafficking, 

activation of intracellular survival signals, etc.), however, remain unknown.

In conclusion, the abundance of K8/K18 intermediate filaments in 

granulosa cells provide a plausible cellular mechanism to prevent Fas- 

induced apoptosis, possibly by impairing Fas trafficking and/or activating 

downstream, intracellular survival signals. Here, we have provided evidence 

that labile protein(s), potentially associated with the K8/K18 filaments, provide 

resistance to apoptosis, while other downstream protective mechanisms await 

additional investigation. Similar mechanisms have been observed in 

epithelial cells of non-reproductive origin, notably hepatocytes (Gilbert et al., 

2001; Gilbert et al., 2004) and HeLa cells (Sullivan et al., 2010), suggesting 

the influence of cytoskeletal structure on Fas-induced apoptosis may be more 

universal than previously thought. In the context of the current work, the 

existence of K8/K18 filaments within granulosa cells of ovarian follicles have 

relevance to aspects of follicular atresia and the selection of follicles for 

ovulation. These insights have some bearing on therapeutic strategies that 

might enhance follicular growth and health within the ovary, thus leading to 

overall improvement in female fertility.
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